Skip to main content

Sessalidade Média Móvel Ponderada


Médias móveis O desvio de fase é a diferença na detecção de pontos de viragem entre dados originais e suavizados. Este efeito é um inconveniente, uma vez que provoca um atraso na detecção dos pontos de viragem da série temporal, especialmente no período mais recente. As médias móveis simétricas centradas são resistentes a este efeito. No entanto, no final (e no início) de séries temporais série simétrica série não pode ser usado. Para calcular os valores suavizados nas duas extremidades das séries temporais é utilizado o filtro assimétrico, porém causam o efeito de fase. Tags / Keywords: Você pode clicar e arrastar na área de traçado para ampliar Você pode mouse sobre pontos de dados para ver o valor real que é representado graficamente Se houver uma caixa de legenda, clique no nome da série para esconder / mostrar Introdução Médias móveis São médias aritméticas aplicadas a intervalos de tempo sucessivos de comprimento fixo da série. Quando aplicados à série temporal original, eles produzem uma série de valores médios. A fórmula geral para a média móvel M de coeficientes é: Os coeficientes das médias móveis são chamados de pesos. A quantidade p f 1 é a ordem média móvel. A média móvel é chamada centrada se o número de observações no passado é igual ao número de observação no futuro (isto é, se p é igual a f). As médias móveis substituem a série temporal original por médias ponderadas dos valores correntes, p observações anteriores à observação corrente e f observações após a observação corrente. Eles são usados ​​para suavizar a série de tempo original. Exemplo A tabela apresenta o número de passageiros transportados por via aérea reportados pela Finlândia em 2001. Os mesmos dados são apresentados no gráfico: Tipos de médias móveis Com base nos padrões de ponderação, as médias móveis podem ser: Simétrico o padrão de pesagem utilizado para calcular a movimentação Média é simétrica em relação ao ponto de dados de destino. Por meio de médias móveis simétricas não é possível obter os valores suavizados para as primeiras p e últimas p observações (para médias móveis simétricas pf). Exemplo Asimétrico o padrão de pesagem utilizado para calcular médias móveis não é simétrico em relação ao ponto de destino. Exemplo As médias móveis também podem ser classificadas de acordo com sua contribuição ao valor final como: médias móveis simples, isto é, médias móveis para as quais todos os pesos são iguais No caso de médias móveis simples, todas as observações contribuem igualmente para o valor final. Escusado será dizer que todas as médias móveis simples são simétricas. Formalmente, para a média móvel simétrica de ordem P 2p 1 todos os pesos são iguais a 1 / P. Exemplo A figura abaixo compara o grau de suavização obtido aplicando médias móveis simples de 3 e 7 termos. As observações extremas (por exemplo, abril de 2010 ou junho de 2011) têm menor impacto sobre a média móvel mais longa do que sobre a mais curta. Médias móveis não simples, isto é, médias móveis para as quais todos os pesos não são iguais. Os casos especiais de médias móveis não-simples são: Médias móveis compostas, que é obtido compondo uma média móvel simples de ordem P, cujos coeficientes são todos iguais a 1 P e uma média móvel simples de ordem Q, cujos coeficientes são todos iguais A 1 Q. Médias móveis assimétricas. Propriedades das médias móveis As médias móveis suavizam a série temporal. Quando aplicadas a uma série temporal, reduzem a amplitude das flutuações observadas e actuam como um filtro que remove os movimentos irregulares da mesma. As médias móveis com o padrão de ponderação apropriado podem ser usadas para eliminar ciclos de um certo comprimento na série temporal. No método de ajuste sazonal X-12-ARIMA são usados ​​diferentes tipos de médias móveis para estimar o ciclo tendencial e a componente sazonal. Se a soma dos coeficientes é igual a 1, então a média móvel preserva a tendência. As médias móveis têm dois padrões importantes: Eles não são robustos e podem ser profundamente afetados por outliers O alisamento nas extremidades da série não pode ser feito, mas com médias móveis assimétricas que introduzem mudanças de fase e atrasos na detecção de pontos de viragem No método X11 , As médias móveis simétricas desempenham um papel importante, uma vez que não introduzem qualquer desvio de fase na série suavizada. Mas, para evitar a perda de informações nas extremidades da série, elas são complementadas por médias móveis assimétricas ad hoc ou aplicadas na série completada pelas previsões. O artigo fornece um desenvolvimento sistemático das expressões de previsão para médias móveis exponenciais ponderadas. Métodos para séries sem tendência, ou tendência aditiva ou multiplicativa são examinados. Da mesma forma, os métodos cobrem séries não-sazonais e sazonais com estruturas de erro aditivo ou multiplicativo. O artigo é uma versão reimpressa do relatório de 1957 para o Escritório de Pesquisa Naval (ONR 52) e está sendo publicado aqui para fornecer maior acessibilidade. Palavras-chave Suavização exponencial Previsão Local sazonal Tendências locais Copyright copy 2004 Publicado por Elsevier B. V. Biografia: Charles C. HOLT é Professor de Gestão emérito na Escola de Pós-Graduação de Negócios da Universidade do Texas em Austin. Sua pesquisa atual é sobre métodos de decisão quantitativa, sistemas de apoio à decisão e previsão financeira. Anteriormente, ele fez pesquisa e ensino em M. I.T. A Universidade Carnegie Mellon, a London School of Economics, a Universidade de Wisconsin eo Urban Institute. Atua em aplicações de computador desde 1947 e tem feito pesquisas sobre controle automático, simulação de sistemas econômicos, programação de produção, emprego e estoques e dinâmica de inflação e desemprego. Média Média O que é Média Ponderada A média ponderada é uma média Calculado por dar valores em um conjunto de dados mais influência de acordo com algum atributo dos dados. É uma média em que cada quantidade a ser calculada é atribuída a um peso, e essas ponderações determinam a importância relativa de cada quantidade na média. As ponderações são o equivalente a ter muitos itens semelhantes com o mesmo valor envolvido na média. VIDEO Carregar o leitor. BREAKING Down Média ponderada A média ponderada é mais frequentemente calculada em relação à frequência dos valores de um conjunto de dados. Uma média ponderada pode ser calculada de diferentes maneiras, no entanto, se certos valores em um conjunto de dados são dados mais importância por razões diferentes da freqüência de ocorrência. Cálculo da média ponderada dos investidores muitas vezes compilar uma posição em um estoque ao longo de vários anos. Os preços das ações mudam diariamente, por isso pode ser difícil manter o controle da base de custo sobre as ações acumuladas ao longo de um período de anos. Se um investidor quiser calcular uma média ponderada do preço da ação que pagou pelas ações, ele deve multiplicar o número de ações adquiridas a cada preço por esse preço, somar esses valores e dividir o valor total pelo número total de ações . Por exemplo, digamos que um investidor adquire 100 ações de uma empresa no ano 1 em 10 e 50 ações da mesma empresa no ano 2 em 40. Para obter a média ponderada do preço pago, o investidor multiplica 100 ações por 10 para Ano 1, 50 ações por 40 para o ano 2 e, em seguida, adiciona os resultados para obter um valor total de 3.000. O investidor divide o valor total pago pelas ações, 3.000 neste caso, pelo número total de ações adquiridas ao longo dos dois anos, 150, para obter o preço médio ponderado pago de 20. Esta média é ponderada em relação ao número de ações Adquirido a cada preço e não apenas ao preço absoluto. Exemplos de Média Ponderada A média ponderada mostra-se em muitas áreas de financiamento, além do preço de compra de ações, incluindo retornos de carteira, contabilidade de estoque e avaliação. Quando um fundo, que detém vários títulos, é de 10 no ano, que 10 representa uma média ponderada de retornos para o fundo em relação ao valor de cada posição no fundo. Para a contabilidade de inventário, o valor médio ponderado das contas de estoque explica as flutuações nos preços das commodities, por exemplo, enquanto os métodos LIFO ou FIFO dão mais importância ao tempo do que ao valor. Ao avaliar as empresas para discernir se suas ações estão corretamente com preço, os investidores usam o custo médio ponderado do capital (WACC) para descontar os fluxos de caixa de uma empresa. O WACC é ponderado com base no valor de mercado da dívida e do patrimônio líquido em uma estrutura de capital da empresa.3 Compreendendo Níveis e Métodos de Previsão Você pode gerar previsões de detalhe (item único) e previsões resumidas (de linha de produtos) que refletem padrões de demanda de produto. O sistema analisa as vendas anteriores para calcular as previsões usando 12 métodos de previsão. As previsões incluem informações detalhadas no nível do item e informações de nível superior sobre uma filial ou a empresa como um todo. 3.1 Critérios de Avaliação do Desempenho da Previsão Dependendo da seleção das opções de processamento e das tendências e padrões nos dados de vendas, alguns métodos de previsão apresentam melhor desempenho do que outros para um determinado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. Você pode achar que um método de previsão que fornece bons resultados em uma fase de um ciclo de vida do produto permanece apropriado ao longo de todo o ciclo de vida. Você pode selecionar entre dois métodos para avaliar o desempenho atual dos métodos de previsão: Porcentagem de precisão (POA). Desvio absoluto médio (MAD). Ambos os métodos de avaliação de desempenho exigem dados de vendas históricos para um período que você especificar. Esse período é chamado de período de retenção ou período de melhor ajuste. Os dados neste período são usados ​​como base para recomendar qual método de previsão usar na realização da projeção de projeção seguinte. Esta recomendação é específica para cada produto e pode mudar de uma geração de previsão para a próxima. 3.1.1 Melhor Ajuste O sistema recomenda a melhor previsão de ajuste aplicando os métodos de previsão selecionados ao histórico de pedidos de vendas anteriores e comparando a simulação de previsão com o histórico real. Quando você gera uma previsão de melhor ajuste, o sistema compara históricos de pedidos de vendas reais com previsões para um período de tempo específico e calcula com que precisão cada método de previsão diferente previu vendas. Em seguida, o sistema recomenda a previsão mais precisa como o melhor ajuste. Este gráfico ilustra as melhores previsões de ajuste: Figura 3-1 Previsão de melhor ajuste O sistema usa esta seqüência de etapas para determinar o melhor ajuste: Use cada método especificado para simular uma previsão para o período de retenção. Compare as vendas reais com as previsões simuladas para o período de retenção. Calcule o POA ou o MAD para determinar qual método de previsão mais se aproxima das vendas reais passadas. O sistema usa POA ou MAD, com base nas opções de processamento selecionadas. Recomende uma melhor previsão de ajuste pelo POA que está mais próximo de 100 por cento (mais ou menos) ou o MAD que está mais próximo de zero. 3.2 Métodos de previsão O JD Edwards EnterpriseOne Forecast Management usa 12 métodos para previsão quantitativa e indica qual método fornece o melhor ajuste para a situação de previsão. Esta seção discute: Método 1: Percentagem em relação ao ano passado. Método 2: Percentagem calculada sobre o ano passado. Método 3: Ano passado para este ano. Método 4: Média móvel. Método 5: Aproximação linear. Método 6: Regressão de mínimos quadrados. Método 7: Aproximação do Segundo Grau. Método 8: Método Flexível. Método 9: Média Móvel Ponderada. Método 10: Suavização linear. Método 11: Suavização Exponencial. Método 12: suavização exponencial com tendência e sazonalidade. Especifique o método que você deseja usar nas opções de processamento do programa Forecast Generation (R34650). A maioria desses métodos fornece controle limitado. Por exemplo, o peso colocado em dados históricos recentes ou o intervalo de datas de dados históricos que é usado nos cálculos pode ser especificado por você. Os exemplos no guia indicam o procedimento de cálculo para cada um dos métodos de previsão disponíveis, dado um conjunto idêntico de dados históricos. Os exemplos de métodos no guia usam parte ou todos esses conjuntos de dados, que são dados históricos dos últimos dois anos. A projeção de previsão vai para o próximo ano. Os dados do histórico de vendas são estáveis, com pequenos aumentos sazonais em julho e dezembro. Esse padrão é característico de um produto maduro que pode estar se aproximando de obsolescência. 3.2.1 Método 1: Percentagem em relação ao ano passado Este método utiliza a fórmula Percentagem sobre o Ano Passado para multiplicar cada período de previsão pelo aumento ou diminuição percentual especificado. Para prever a demanda, este método requer o número de períodos para o melhor ajuste mais um ano de histórico de vendas. Este método é útil para prever a demanda por itens sazonais com crescimento ou declínio. 3.2.1.1 Exemplo: Método 1: Percentagem em relação ao ano passado A fórmula Percentagem em relação ao ano anterior multiplica os dados de vendas do ano anterior por um fator especificado e, em seguida, projeta os resultados ao longo do próximo ano. Este método pode ser útil na orçamentação para simular o efeito de uma taxa de crescimento especificada ou quando o histórico de vendas tem uma componente sazonal significativa. Especificações de previsão: Fator de multiplicação. Por exemplo, especifique 110 na opção de processamento para aumentar os dados do histórico de vendas dos anos anteriores em 10%. Histórico de vendas necessário: Um ano para o cálculo da previsão, mais o número de períodos necessários para avaliar o desempenho da previsão (períodos de melhor ajuste) que você especificar. Esta tabela é a história utilizada no cálculo da previsão: previsão de fevereiro é igual a 117 vezes 1,1 128,7 arredondado para 129. Previsão de março é igual a 115 vezes 1,1 126,5 arredondado para 127. 3.2.2 Método 2: Percentual calculado sobre o ano passado Este método usa a porcentagem calculada mais Fórmula do ano passado para comparar as vendas passadas de períodos especificados às vendas dos mesmos períodos do ano anterior. O sistema determina uma porcentagem de aumento ou diminuição e, em seguida, multiplica cada período pela porcentagem para determinar a previsão. Para prever a demanda, esse método requer o número de períodos do histórico de pedidos de vendas mais um ano de histórico de vendas. Este método é útil para prever a demanda de curto prazo para itens sazonais com crescimento ou declínio. 3.2.2.1 Exemplo: Método 2: Porcentagem calculada sobre o ano passado A fórmula calculada sobre o ano passado multiplica os dados de vendas do ano anterior por um fator que é calculado pelo sistema e, em seguida, projeta esse resultado para o próximo ano. Este método pode ser útil para projetar o efeito de estender a taxa de crescimento recente de um produto para o próximo ano, preservando um padrão sazonal que está presente no histórico de vendas. Especificações de previsão: Faixa de história de vendas para usar no cálculo da taxa de crescimento. Por exemplo, especifique n igual a 4 na opção de processamento para comparar o histórico de vendas dos últimos quatro períodos com esses mesmos quatro períodos do ano anterior. Use a razão calculada para fazer a projeção para o próximo ano. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão, dado n 4: previsão de fevereiro é igual a 117 vezes 0,9766 114,26 arredondado para 114. Previsão de março é igual a 115 vezes 0,9766 112,31 arredondado para 112. 3.2.3 Método 3: Ano passado para este ano Este método usa Vendas nos últimos anos para os próximos anos. Para prever a demanda, esse método requer o número de períodos melhor ajustados mais um ano do histórico de pedidos de vendas. Este método é útil para prever a demanda por produtos maduros com demanda de nível ou demanda sazonal sem uma tendência. 3.2.3.1 Exemplo: Método 3: Ano passado a este ano A fórmula do ano passado para este ano copia os dados de vendas do ano anterior para o ano seguinte. Este método pode ser útil no orçamento para simular vendas no nível atual. O produto é maduro e não tem tendência a longo prazo, mas pode existir um padrão de demanda sazonal significativo. Especificações de previsão: Nenhuma. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: Previsão de janeiro é igual a janeiro do ano passado com um valor de previsão de 128. Previsão de fevereiro é igual a fevereiro do ano passado com um valor de previsão de 117. Previsão de março é igual a março do ano passado com um valor de previsão de 115. 3.2.4 Método 4: Média móvel Este método usa a fórmula Média Móvel para a média do número especificado de períodos para projetar o próximo período. Você deve recalcular-lo muitas vezes (mensal, ou pelo menos trimestral) para refletir a mudança do nível de demanda. Para prever a demanda, esse método requer o número de períodos mais adequados mais o número de períodos do histórico de pedidos de vendas. Este método é útil para prever a demanda por produtos maduros sem uma tendência. 3.2.4.1 Exemplo: Método 4: Moving Average Moving Average (MA) é um método popular para calcular a média dos resultados do histórico de vendas recente para determinar uma projeção para o curto prazo. O método de previsão MA está atrás das tendências. O viés de previsão e os erros sistemáticos ocorrem quando o histórico de vendas do produto exibe tendências fortes ou padrões sazonais. Este método funciona melhor para previsões de curto prazo de produtos maduros do que para produtos que estão em estágios de crescimento ou obsolescência do ciclo de vida. Especificações de previsão: n é igual ao número de períodos do histórico de vendas a ser usado no cálculo da previsão. Por exemplo, especifique n 4 na opção de processamento para usar os quatro períodos mais recentes como base para a projeção para o próximo período de tempo. Um valor grande para n (como 12) requer mais histórico de vendas. Isso resulta em uma previsão estável, mas é lento para reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) é mais rápido para responder a mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. Histórico de vendas necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história usada no cálculo da previsão: Previsão de fevereiro é igual a (114 119 137 125) / 4 123.75 arredondado para 124. Previsão de março é igual a (119 137 125 124) / 4 126,25 arredondado para 126. 3.2.5 Método 5: Aproximação Linear Esse método usa a fórmula de aproximação linear para calcular uma tendência do número de períodos do histórico de pedidos de vendas e projetar essa tendência para a previsão. Você deve recalcular a tendência mensalmente para detectar mudanças nas tendências. Esse método requer o número de períodos de melhor ajuste mais o número de períodos especificados do histórico de pedidos de vendas. Este método é útil para prever a procura de novos produtos, ou produtos com tendências positivas ou negativas consistentes que não são devidas a flutuações sazonais. 3.2.5.1 Exemplo: Método 5: Aproximação linear A aproximação linear calcula uma tendência que se baseia em dois pontos de dados do histórico de vendas. Esses dois pontos definem uma linha de tendência reta projetada para o futuro. Use esse método com cautela porque as previsões de longo alcance são alavancadas por pequenas alterações em apenas dois pontos de dados. Especificações de previsão: n é igual ao ponto de dados no histórico de vendas comparado ao ponto de dados mais recente para identificar uma tendência. Por exemplo, especifique n 4 para usar a diferença entre dezembro (dados mais recentes) e agosto (quatro períodos antes de dezembro) como base para o cálculo da tendência. Histórico de vendas mínimo necessário: n mais 1 mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história usada no cálculo da previsão: Previsão de janeiro de dezembro do ano passado 1 (Tendência) que é igual a 137 (1 vez 2) 139. Previsão de fevereiro de dezembro do ano passado 1 (Tendência), que é igual a 137 (2 vezes 2) 141. Previsão de março de dezembro do ano passado 1 (Tendência) que é igual a 137 (3 vezes 2) 143. 3.2.6 Método 6: Regressão de mínimos quadrados O método de regressão de mínimos quadrados (LSR) deriva uma equação descrevendo uma relação de linha reta entre os dados históricos de vendas E a passagem do tempo. LSR ajusta uma linha para o intervalo de dados selecionado de modo que a soma dos quadrados das diferenças entre os pontos de dados de vendas reais e a linha de regressão são minimizados. A previsão é uma projeção dessa linha reta para o futuro. Esse método requer histórico de dados de vendas para o período que é representado pelo número de períodos melhor ajustado mais o número especificado de períodos de dados históricos. O requisito mínimo é dois pontos de dados históricos. Esse método é útil para prever a demanda quando uma tendência linear está nos dados. 3.2.6.1 Exemplo: Método 6: regressão linear de regressão de mínimos quadrados ou regressão de mínimos quadrados (LSR), é o método mais popular para identificar uma tendência linear nos dados históricos de vendas. O método calcula os valores de aeb que devem ser usados ​​na fórmula: Esta equação descreve uma reta, onde Y representa vendas e X representa tempo. Regressão linear é lenta para reconhecer pontos de viragem e deslocamentos de função de etapa na demanda. A regressão linear encaixa uma linha reta nos dados, mesmo quando os dados são sazonais ou melhor descritos por uma curva. Quando os dados do histórico de vendas seguem uma curva ou têm um forte padrão sazonal, ocorrem erros de previsão e sistemáticos. Especificações de previsão: n é igual aos períodos do histórico de vendas que serão usados ​​no cálculo dos valores de aeb. Por exemplo, especifique n 4 para usar o histórico de setembro a dezembro como base para os cálculos. Quando os dados estiverem disponíveis, um n maior (como n 24) normalmente seria usado. LSR define uma linha para apenas dois pontos de dados. Para este exemplo, um pequeno valor para n (n 4) foi escolhido para reduzir os cálculos manuais que são necessários para verificar os resultados. Histórico de vendas mínimo exigido: n períodos mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: Previsão de março é igual a 119,5 (7 vezes 2,3) 135,6 arredondado para 136. 3.2.7 Método 7: Aproximação de Segundo Grau Para projetar a previsão, este método usa a fórmula de Aproximação de Segundo Grau para traçar uma curva Que se baseia no número de períodos do histórico de vendas. Este método requer o número de períodos melhor ajuste mais o número de períodos do histórico de pedidos de vendas vezes três. Esse método não é útil para prever a demanda por um período de longo prazo. 3.2.7.1 Exemplo: Método 7: Aproximação do Segundo Grau A Regressão Linear determina os valores para aeb na fórmula de previsão Y a b X com o objetivo de ajustar uma linha reta aos dados do histórico de vendas. A aproximação de segundo grau é semelhante, mas este método determina valores para a, b e c na fórmula de previsão: Y a b X c X 2 O objetivo deste método é ajustar uma curva aos dados do histórico de vendas. Este método é útil quando um produto está na transição entre os estágios do ciclo de vida. Por exemplo, quando um novo produto passa da introdução para os estádios de crescimento, a tendência de vendas pode acelerar. Devido ao termo de segunda ordem, a previsão pode aproximar-se rapidamente do infinito ou cair para zero (dependendo se o coeficiente c é positivo ou negativo). Este método é útil apenas no curto prazo. Especificações de previsão: a fórmula encontrar a, b e c para ajustar uma curva para exatamente três pontos. Você especifica n, o número de períodos de tempo de dados a serem acumulados em cada um dos três pontos. Neste exemplo, n 3. Os dados reais de vendas de abril a junho são combinados no primeiro ponto, Q1. Julho a setembro são adicionados em conjunto para criar Q2, e de outubro a dezembro somam para Q3. A curva é ajustada aos três valores Q1, Q2 e Q3. Histórico de vendas necessário: 3 vezes n períodos para o cálculo da previsão mais o número de períodos necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: Q0 (Jan) (Fev) (Mar) Q1 (Abr) (Maio) (Jun), que é igual a 125 129 137 384 Q2 (Jul) (Agosto) 131 400 Q3 (Oct) (Nov) (Dec) que é igual a 114 119 137 370 O próximo passo envolve o cálculo dos três coeficientes a, b e c a serem usados ​​na fórmula de previsão Y ab X c X 2. Q1, Q2 e Q3 são apresentados no gráfico, onde o tempo é plotado no eixo horizontal. Q1 representa o total de vendas históricas para abril, maio e junho e é plotada em X 1 Q2 corresponde a julho a setembro Q3 corresponde a outubro a dezembro e Q4 representa janeiro a março. Este gráfico ilustra o traçado de Q1, Q2, Q3 e Q4 para a aproximação de segundo grau: Figura 3-2 Plotando Q1, Q2, Q3 e Q4 para aproximação de segundo grau Três equações descrevem os três pontos no gráfico: (1) Q1 A bX cX 2 onde X 1 (Q1 abc) (2) Q2 a bX cX 2 onde X 2 (Q2 a 2b 4c) (3) Q3 a bX cX 2 onde X 3 (Q3 a 3b 9c) Resolver as três equações simultaneamente Para encontrar b, ae c: Subtraia a equação 1 (1) da equação 2 (2) e resolva para b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Substituir esta equação para B na equação (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Finalmente, substitua essas equações por aeb pela equação (1): (1) Q3 ndash O método de Aproximação de Segundo Grau calcula a, b e c da seguinte forma: a Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) Q1) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 ndash 384) ndash (3 vezes ndash23) 16 69 85 c (Q3 ndash Q2) 2 (370 ndash 400) (384 ndash 400) / 2 ndash23 Este é um cálculo de aproximação de segundo grau de previsão: Y a bX cX 2 322 85X (ndash23) (X2) Quando X4, Q4 322 340 ndash 368 294. A Previsão é igual a 294/3 98 por período. Quando X5, Q5 322 425 ndash 575 172. A previsão é igual a 172/3 58,33 arredondada para 57 por período. Quando X 6, Q 6 322 510 ndash 828 4. A previsão é igual a 4/3 1,33 arredondado para 1 por período. 3.2.8 Método 8: Método flexível Este método permite selecionar o número de melhor ajuste de períodos do histórico de pedidos de vendas que começa n meses antes da data de início da previsão e para Aplicar um aumento percentual ou diminuir o fator de multiplicação com o qual modificar a previsão. Esse método é semelhante ao método 1, porcentagem sobre o ano passado, exceto que você pode especificar o número de períodos que você usar como a base. Dependendo do que você selecionar como n, esse método requer períodos melhor ajuste mais o número de períodos de dados de vendas que é indicado. Esse método é útil para prever a demanda por uma tendência planejada. 3.2.8.1 Exemplo: Método 8: Método Flexível O Método Flexível (Percentagem sobre n Meses Anterior) é semelhante ao Método 1, Percentual em relação ao Ano Passado. Ambos os métodos multiplicam os dados de vendas de um período de tempo anterior por um fator especificado por você e, em seguida, projetam esse resultado para o futuro. No método Percent Over Last Year, a projeção é baseada em dados do mesmo período do ano anterior. Você também pode usar o Método Flexível para especificar um período de tempo, diferente do mesmo período no último ano, para usar como base para os cálculos. Fator de multiplicação. Por exemplo, especifique 110 na opção de processamento para aumentar os dados do histórico de vendas anteriores em 10%. Período de base. Por exemplo, n 4 faz com que a primeira previsão se baseie em dados de vendas em setembro do ano passado. Histórico de vendas mínimo exigido: o número de períodos de volta ao período base mais o número de períodos necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história usada no cálculo da previsão: 3.2.9 Método 9: Média Móvel Ponderada A fórmula Média Móvel Ponderada é semelhante ao Método 4, fórmula Média Móvel, porque média o histórico de vendas dos meses anteriores para projetar o próximo histórico de vendas. No entanto, com esta fórmula você pode atribuir pesos para cada um dos períodos anteriores. Este método requer o número de períodos ponderados selecionados mais o número de períodos melhores dados de ajuste. Semelhante à média móvel, este método fica atrás das tendências de demanda, portanto este método não é recomendado para produtos com tendências fortes ou sazonalidade. Este método é útil para prever a demanda por produtos maduros com demanda que é relativamente nível. 3.2.9.1 Exemplo: Método 9: Média Móvel Ponderada O método Média Móvel Ponderada (WMA) é semelhante ao Método 4, Média Móvel (MA). No entanto, você pode atribuir pesos desiguais aos dados históricos ao usar WMA. O método calcula uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Dados mais recentes geralmente é atribuído um peso maior do que os dados mais antigos, de modo WMA é mais sensível às mudanças no nível de vendas. No entanto, o viés de previsão e os erros sistemáticos ocorrem quando o histórico de vendas do produto exibe fortes tendências ou padrões sazonais. Este método funciona melhor para as previsões de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. O número de períodos do histórico de vendas (n) a ser usado no cálculo da previsão. Por exemplo, especifique n 4 na opção de processamento para usar os quatro períodos mais recentes como base para a projeção para o próximo período de tempo. Um valor grande para n (como 12) requer mais histórico de vendas. Tal valor resulta em uma previsão estável, mas é lento para reconhecer mudanças no nível de vendas. Inversamente, um pequeno valor para n (como 3) responde mais rapidamente às mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. O peso que é atribuído a cada um dos períodos de dados históricos. Os pesos atribuídos devem totalizar 1,00. Por exemplo, quando n 4, atribua pesos de 0,50, 0,25, 0,15 e 0,10 com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: Previsão de Janeiro é igual a (128 vezes 0,10) (119 vezes 0,25) (137 vezes 0,50) / (0,10 0,15 0,25 0,50) 128,45 arredondado para 128. Previsão de fevereiro é igual a (114 Vezes 0.10) (119 vezes 0,15) (137 vezes 0,25) (128 vezes 0,50) / 1 127,5 arredondado para 128. A previsão de março é igual a (119 vezes 0,10) (137 vezes 0,15) (128 vezes 0,25) (128 vezes 0,50) / 1 128,45 arredondado para 128. 3.2.10 Método 10: Linear Smoothing Este método calcula uma média ponderada de dados de vendas anteriores. No cálculo, esse método usa o número de períodos do histórico de pedidos de vendas (de 1 a 12) que é indicado na opção de processamento. O sistema utiliza uma progressão matemática para pesar os dados na faixa do primeiro (menor peso) ao final (maior peso). Em seguida, o sistema projeta essas informações para cada período da previsão. Esse método requer o melhor ajuste de meses mais o histórico de pedidos de vendas para o número de períodos que são especificados na opção de processamento. 3.2.10.1 Exemplo: Método 10: Linear Smoothing Este método é semelhante ao Método 9, WMA. No entanto, em vez de arbitrariamente atribuir pesos aos dados históricos, uma fórmula é usada para atribuir pesos que declinam linearmente e somam a 1,00. O método calcula então uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Como todas as técnicas lineares de média móvel de previsão, o viés de previsão e os erros sistemáticos ocorrem quando o histórico de vendas do produto exibe tendências fortes ou padrões sazonais. Este método funciona melhor para as previsões de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. N é igual ao número de períodos do histórico de vendas a ser usado no cálculo da previsão. Por exemplo, especifique n igual a 4 na opção de processamento para usar os quatro períodos mais recentes como base para a projeção no próximo período de tempo. O sistema atribui automaticamente os pesos aos dados históricos que diminuem linearmente e somam a 1,00. Por exemplo, quando n é igual a 4, o sistema atribui pesos de 0,4, 0,3, 0,2 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é o histórico utilizado no cálculo da previsão: 3.2.11 Método 11: Suavização exponencial Este método calcula uma média suavizada, que se torna uma estimativa que representa o nível geral de vendas durante os períodos de dados históricos selecionados. Esse método requer o histórico de dados de vendas para o período de tempo que é representado pelo número de períodos melhor ajustados mais o número de períodos de dados históricos especificados. O requisito mínimo é dois períodos de dados históricos. Esse método é útil para prever a demanda quando não há tendência linear nos dados. 3.2.11.1 Exemplo: Método 11: Suavização exponencial Este método é semelhante ao Método 10, Linear Smoothing. No Linear Smoothing, o sistema atribui pesos que diminuem linearmente para os dados históricos. Em Suavização Exponencial, o sistema atribui pesos que decrescem exponencialmente. A previsão é uma média ponderada das vendas reais do período anterior e da previsão do período anterior. Alpha é o peso que é aplicado às vendas reais para o período anterior. (1 ndash alfa) é o peso que é aplicado à previsão para o período anterior. Os valores para alfa variam de 0 a 1 e geralmente caem entre 0,1 e 0,4. A soma dos pesos é 1,00 (alfa (1 ndash alfa) 1). Você deve atribuir um valor para a constante de suavização, alfa. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) / 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) / (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. In practice the moving average will provide a good estimate of the mean of the time series if the mean is constant or slowly changing. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo medirá os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série de tempo usada para ilustração juntamente com a demanda média a partir da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ele aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então ele se torna constante novamente. Os dados são simulados adicionando à média um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o número inteiro mais próximo. A tabela mostra as observações simuladas utilizadas para o exemplo. Quando usamos a tabela, devemos lembrar que a qualquer momento, apenas os dados passados ​​são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas juntamente com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas da média móvel para a direita por períodos. Uma conclusão é imediatamente aparente a partir da figura. Para as três estimativas, a média móvel está aquém da tendência linear, com o atraso aumentando com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um tempo específico no valor médio do modelo eo valor médio predito pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e viés do estimador da média são dados nas equações abaixo. As curvas de exemplo não correspondem a essas equações porque o modelo de exemplo não está aumentando continuamente, em vez disso, ele começa como uma constante, muda para uma tendência e, em seguida, torna-se constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada deslocando as curvas para a direita. O atraso e o viés aumentam proporcionalmente. As equações abaixo indicam o atraso e o viés de um período de previsão para o futuro quando comparado aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel baseia-se no pressuposto de uma média constante, eo exemplo tem uma tendência linear na média durante uma parte do período do estudo. Como as séries de tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para tais resultados. Podemos também concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menor. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero ea variância do erro é composta por um termo que é uma função de e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com uma média constante. Este termo é minimizado fazendo-se o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar a previsão responsiva às mudanças, queremos que m seja o menor possível (1), mas isso aumenta a variância do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de Previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo add-in para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Em comparação com a tabela acima, os índices de período são deslocados por -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usados ​​para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro de média móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. When the forecast interval is changed to a larger number the numbers in the Fore column are shifted down. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto a partir da média móvel no tempo 0 é 11.1. O erro é então -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente.

Comments